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Abstract—While modern deep learning models have long been
considered black boxes, recent advances in explainable machine
learning now shed light on their internals. However, explana-
tion methods can be deceived just as the machine learning
model itself using adversarial examples and neural backdoors,
giving rise to explanation-aware attacks. Such attacks can
simultaneously manipulate a classifier’s prediction and its
explanations. We argue that separating these two objectives
into different attack vectors can be beneficial and present so-
called composite explanation-aware attacks. We manipulate the
classifier’s prediction via a neural backdoor and its explanation
using an adversarial example, allowing us to disguise the back-
door individually per sample. This dichotomy allows composite
explanation-aware attacks to (a) regard attack concealment
as optional if input manipulations are difficult due to input
filters, constraint feature sets, or low complexity of the targeted
model and (b) establish the backdoor via mere data poisoning
only, without assuming control over the entire learning process.
Composite explanation-aware attacks represent a new attack
with a threat model neglected by existing works so far. In our
evaluation, we demonstrate their effectiveness against popular
explanation methods, Gradients and GradCAM, and extensively
investigate the relation of both components of our attack.

1. Introduction

Deep learning yields impressive results in speech [7, 12],
vision [20, 28, 38], computer security [1, 18, 23, 34], and
many other domains [9]. For a long time, though, it was
difficult to deduce the reasons for a machine learning model’s
decision, up until the research community has developed
so-called post-hoc feature attribution methods [2, 15, 27, 31,
35, 36, 45]. These methods assign relevance scores to an
input’s features as they contribute to the final prediction.

Unfortunately, recent research has shown that such
explanation methods can be tricked into showing wrong
explanations giving rise to explanation-aware attacks [32, 41].
Similar to attacks against a classifier’s prediction, such
as adversarial examples [8, 17, 30, 40] or neural back-
doors [10, 19, 29], these attacks can be conducted as
input-manipulation [14, 16, 22, 44] or model-manipulation
attacks [4, 21, 22, 33]. While various objectives exist, most
commonly these attacks attempt to disguise an ongoing
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Figure 1: Depiction of attacks targeting a model’s prediction
and explanation. Our method combines the benefits of input-
manipulations (sample-specific explanations) and model-
manipulations (sample-independent predictions).

attack [32], that is, the adversary maliciously changes the
prediction and additionally manipulates the output of the
explanation method applied post-hoc [21, 33, 44].

In order to highlight the differences of the considered
threat models and attack objectives, Fig. 1 depicts the
functionality of work central to this line of research, including
(left to right columns): ❶ No attack, ❷ ADV [14], an
early input-manipulation attack (adversarial example) which
changes a sample’s explanation but leaves its prediction
unchanged, ❸ ADV2 [44], an adversarial example forging
explanations and predictions, ❹ EABD [33], a neural back-
door forging explanations and predictions.

The input images, depicted in the first row, may be
unmodified, adversarially perturbed per sample (pictures
containing orange frames), or injected with a backdoor trigger
that must be applied universally for all samples (pictures
containing blue frames). The second and third row show the
explanations of either the unmodified (clean) model or the
manipulated model, depending on the attack scenario. Not
applicable scenarios are indicated as dashed boxes.

The two primary attack objectives, changing predictions
and forging explanations, are indicated as arrows pointing
to the respective output while the arrows’ colors indicate
what type of manipulation is used to achieve the objective.



Orange arrows represent sample-specific input-manipulations,
conceptionally similar to adversarial examples [8, 17, 40].
The adversary crafts inputs that exhibit wrong explanations
when being analyzed per sample individually (❷). Com-
bining both objectives, an adversary can disguise an input-
manipulation attack on a per-sample basis (❸). Blue arrows,
in turn, represent model manipulations that are independent
of the input sample but specific to the introduced trigger
pattern as used for neural backdoors [10, 19, 29]. While
prediction-preserving explanation-aware backdoors exist [33],
we focus on the more practical setting where the predictions
and explanations are attacked (❹).

The crucial observation to make is, that in the latter
attack the model shortcuts to one specific target prediction
and one specific target explanation whenever a trigger is
present and thus the adversary has to fix both at training time.
Moreover, sophisticated input-manipulation attacks might be
difficult to implement due to input filters, constraint feature
sets, or low complexity of the targeted model.

In this paper, we go one step further and introduce so-
called composite explanation-aware attacks (BD+ADV), that
combine model manipulations and input-manipulations to
decouple the two attack objectives (Fig. 1 column ❺): We
introduce a neural backdoor to enforce a target prediction
upon presence of a trigger pattern in the input. Additionally,
we perturb the input sample (next to placing the trigger
but not altering the trigger) to enforce a specific explanation
output. Consequently, the adversary has to decide for a target
prediction up front at training time but can choose a target
explanation at inference time. This dichotomy is particularly
beneficial because an explanation’s persuasiveness strongly
depends on whether it fits the respective sample.

In summary, we make the following contributions:

• New threat model. We present composite explanation-
aware attacks based on a new threat model not dis-
cussed in prior work before. Our attack decouples the
two adversarial objectives, influencing predictions and
forging explanations, via model-manipulation and input-
manipulation attacks, respectively.

• Comprehensive evaluation. We extensively evaluate
our attacks using the example of image classification,
where we employ a patch-based trigger [19, 33] tar-
geting two explanation methods Gradients [3, 39] and
GradCAM [36], and four different target explanations.
In addition, we research how well a backdooring trig-
ger can be disguised, if the attacks transfer to other
models, and if fooling the explanation is harder in not-
manipulated areas of the image.

• Variable and optional forgery of explanations. Com-
posite explanation-aware attacks are similarily effective
as explanation-aware backdoors (EABD) [33], but they
additionally provide the adversary with a sample-specific
choice of the forged explanation. At the same time,
forging the explanations is optional and may be omitted
if advanced input-manipulations are not possible.

2. Background and Related Work

In this section, we introduce the notation before we
provide background information on (1) explainable machine
learning, (2) adversarial examples, and (3) neural backdoors.
Additionally, we discuss related work on manipulating
explanation methods in the outlined attack categories.

Notation. We consider a model θ with a decision function
Fθ : X → Y that operates on an input x = (x1, . . . , xd) ∈
X = Rd and predicts a label Fθ(x) := argmaxc fθ(x)c. The
function fθ returns a vector of probability scores for each
class c. The dataset consists of n clean datapoints and their
ground truth labels Dorig = (x̂i, ŷi)i∈[n]. An explanation
method hθ : X → E assigns relevance scores to subsets
of features of an input sample x, yielding a relevance map
r = (r1, . . . , r≤d) as an element of the explanation space
E = [0, 1]≤d, e.g., the space of pixels of an image.

2.1. Explainable Machine Learning

Explanation methods assign relevance scores to individual
input features, indicating their importance for the model’s
decision. These relevance scores are frequently visualized as
heatmaps, superimposed on the input, a visualization that we
adopt for our evaluation also. More specifically, we consider
two gradient-based explanation methods:

Gradients. Computing a model’s gradients w.r.t. the in-
put is a simple measure of feature relevance [3, 39]:
hθ(x) = |∂ maxc fθ(x)c/∂x| . In the image domain, the gained
values are commonly max-aggregated over the color channels
to “denoise” the explanation. While difficult to interpret,
gradients serves as the basis for other explanation methods.

GradCAM. In addition, we investigate attacks against
GradCAM explanations [36]. This technique approximates
the classification output of class c as a linear combination
of neuron activations in the network’s penultimate layer
weighted by the gradients of the remaining layers.

2.2. Adversarial Examples

Adversarial examples are input-manipulation attacks that
fool a classifier at inference time [6, 40]. The adversary
crafts perturbations δx such that x̃ = x+ δx is mispredicted.
Such attacks come in two flavours; Untargeted and targeted
attacks. In the first, the manipulation should yield any wrong
prediction Fθ(x̃) ̸= ŷ, where ŷ is the ground-truth class.
In the latter, a target class yt is specified: Fθ(x̃) = yt.
In both cases the made perturbation should be small and
imperceptible to the human eye. To enforce this impercep-
tibility, the added perturbation is limited to an Lp-norm
ball: ||x− x̃||p ≤ ϵ. Two infamous attacks are Fast Gradient
Signed Method (FGSM) [17] and Projected Gradient Descent
(PGD) [30]. FGSM performs one step in the gradient’s
direction. PGD extends the FGSM procedure to multiple
steps while interatively projecting back into the L∞-norm
ball centered around the original input x. Both attacks require
knowledge of the model’s gradients w.r.t. the input ∇xfθ(x).



Fooling Explanations at Inference Time. Similarily, care-
fully perturbed samples can exhibit arbitrary, rogue explana-
tions instead of the true explanations [14, 16, 24, 44]. At the
same time, the ground-truth prediction ŷ can either be kept
intact [14] or be exchanged for another (target) class yt [44].
To craft the adversarial sample the attacker often solves a
bi-objective problem:

min
δx

(1− λ) · Lpred + λ · ||hθ(x+ δx)− rtx|| ,

where rtx represents the sample-specific target expla-
nation to which the adversarial sample’s explanation,
hθ(x̃ = x+ δx), should be close. For the prediction loss
Lpred, one may pursue different strategies: Dombrowski
et al. [14] ensure the similarity of the softlabels by setting
Lpred := ||fθ(x)− fθ(x̃)||22, i.e., it is a prediction-preserving
attack [32]. Additionally they aim for ||x− x̃|| ≪ 1, but do
not enforce this in their multi-step attack1. Zhang et al. [44],
in turn, aim to yield a specific target class yt and constrain
the infinity norm of the perturbation: ||x− x̃||∞ ≤ ϵ and
optimize via PGD [30]. Both measure the Mean Squared
Error (MSE) between explanations. Note that for comparison
fairness we enforce ||x− x̃||∞ ≤ ϵ for both attacks here.

2.3. Neural Backdoors

Neural backdoors make the model predict the target
class if a predefined trigger is present in a sample [19, 37].
The necessary model manipulations can, for example, be
achieved indirectly through data poisoning [5, 10, 37, 43]. In
its simplest form, a certain percentage of the training data is
duplicated and annotated with the trigger, denoted as τ (x̂),
where x̂ represents a clean original sample. Additionally,
the annotated samples are relabeled as the desired target
class yt:

D := Dorig ∪ D̃ ⊂ {(τ (x̂), yt) | (x̂, ŷ) ∈ Dorig} .

The malicious correlations are picked up during training, and
the resulting model predicts yt whenever a sample contains
the trigger, otherwise the model behaves inconspicuous.

Fooling Explanations at Training Time. Again, the adver-
sary can not only manipulate a model’s predictions but also
it’s explanations. For instance, one work suggests explanation-
aware backdoors EABD [33]. Therefore they poison the
training data and additionally train the model under the
following bi-objective optimization problem:

minθ̃ (1− λ) · LCE(x, y; θ̃) + λ · Lexpl(hθ̃(x), r
t
x) ,

with the common cross-entropy loss LCE , and a separate
explanation loss quantifying how well the explanations are
fooled, Lexpl, e.g., MSE or Structural Dissimilarity Index
(DSSIM) [42]. Importantly, the model shows the desired
explanations and predictions only in the presence of the
trigger. Otherwise, the model behaves inconspiciously. By
adjusting rtx, the backdoor can be tailored toward different
variations of how to fool the explanations. The decision,
however, must be made at training time.

1. cf. https://github.com/pankessel/adv explanation ref

3. Threat Model

Next, we delve into the goals and capabilities necessary
to execute composite explanation-aware attacks, compare
our threat model to those of prior work, and elucidate our
interpretation and implementation of “clean explanations.”

Goals. The adversary strives for three goals: She wants
to (1) manipulate predictions of any inputs of any class
toward a fixed target prediction, and (2) facilitate this effect
through applying a common sample-independent trigger
pattern. However, she also wants to (3) cause freely-chosen
explanations for each sample individually. This last goal is
impossible to achieve by mere model manipulation alone,
requiring a transition to input-manipulation attacks.

Capabilities. We assume that the adversary can manipulate
a portion of the training data according to a poisoning rate ρ.
During training these poisoned samples establish a correlation
between the trigger and the target prediction. However, unlike
prior work [33] the adversary does not control the learning
process and does not manipulate the used loss function.
We, hence, operate in a mere data-poisoning setting for the
model manipulation. Additionally, the adversary is able to
generate input-manipulation attacks (adversarial examples)
as considered in prior work [14, 44].

Relation to Prior Work. Explanation-aware backdoors [33]
require full control over the training procedure including
the training data and the used loss function also resulting
in the full knowledge of the model. At inference time,
however, they make no use of this knowledge and only
add the trigger. Composite explanation-aware attacks only
require data poisoning capabilities but run white-box input
manipulations later. ADV2 and ADV do not require the
poisoning step, resulting in a weaker threat model.

In contrast to prior input-manipulation attacks to fool
explanations [14, 44], an unmodified “original model” does
not exist for backdooring attacks (cf. Fig. 1). Both EABD [33]
and our BD+ADV attacks yield a manipulated model directly.
Hence, we understand the explanation-preserving attack [32]
as showing a reasonable target explanation per input, similar
to what an unmodified model would exhibit for the sample at
hand. We generate these realistic explanations by explaining
a clean model with the same architecture.

4. Sample-Specific Disguise of Backdoors

Composite explanation-aware attacks involve two phases:
First, we establish a neural backdoor through data poisoning
to cause mispredictions towards a fixed target class. Second
(after model deployment), we add the backdoor trigger to
the input and perturb the remaining (non-trigger) features to
yield an aimed for explanation. Note that the misprediction
is sample-indepedent, that is, it is identical for each input
sample processed. At the same time, however, the forged
explanation is sample-specific.

Overall, our evasive sample, x̃ = τ (x̂) + δx, combines
trigger injection τ (x̂) with input perturbations δx. Only that

https://github.com/pankessel/adv_explanation_ref


the perturbation δx is required to be zero for all features
influenced by the trigger. In the following, we describe the
necessary steps at training time and inference time in detail.

4.1. Training Time

The primary objective of our composite explanation-
aware attacks is to infer an adversary-chosen target prediction
which we manifest at training time. To this end, we inject
a backdoor into the model through poisoned training data.
Similar to other attacks [e.g., 19, 33], we overwrite a fixed
area with a trigger patch τ (x) := (1−m)⊙ x ⊕ m⊙ τ ,
where m denotes the {0, 1} pixel mask of the trigger patch,
⊙ is the element-wise multiplication, and τ represents the
trigger image containing the actual pixel values. Concretely,
we use a white square with a one-pixel-wide black border
positioned at the bottom right (cf. Fig. 1).

4.2. Inference Time

The secondary objective of our composite explanation-
aware attacks is to disguise the triggering of the neural
backdoor at inference time. We do so by perturbing the
input’s remaining pixels (where no trigger is) so that the
post-hoc analysis shows an attacker-chosen (sample-specific)
target explanation rtx. Pixels influenced by the trigger stay
unchanged during the perturbation:

∥(x ̸= τ (x̂))⊕ (0 ̸= δx)∥∞ ≤ 1 ,

where ̸= denotes the element-wise inequality, and 0 repre-
sents the zero vector. We optimize

min
δx

(1− λ) · LCE(x̃, y
t; θ̃) + λ ·MSE(hθ̃(x̃)− rtx) ,

where x̃ = τ (x̂) + δx. We do this iteratively via PGD [30]:

x(i+1) = proj
Bϵ(x)

(
x(i) − η · sgn(∇x(i)L)

)
, (1)

where projBϵ(x) is the projection into the norm ball Bϵ(x)
of radius ϵ, centered at the input x. η denotes the learning
rate. In other words, our manipulation at inference supports
the backdoor’s objective, and (more importantly) pushes the
explanation toward a sample-specific target explanation.

Unfortunately, gradient-based explanation methods, like
Gradients and GradCAM, compute gradients of the network.
Hence, optimizing via gradient descent requires a non-
zero second derivative, which is not the case for ReLU.
Therefore, we instead use the Softplus activation function
Softplus(x) = log(1+exp(β·x))/β during optimization. For
large β, Softplus converges to ReLU but also has small
gradients. Similar to related work [14, 33], we set β = 8 and
use a beta growth rate to increase β per PGD-step. Impor-
tantly, we use Softplus activation only during optimization
but revert to ReLU for our evaluation. In addition, we perform
a warm start using only Lexpl. After the optimization, we
map the crafted input to the discrete byte space {0, .., 255}.

5. Evaluation

We evaluate our composite explanation-aware attacks
(or BD+ADV for short) experimentally in the learning setup
described below, considering four target explanations. In
Section 5.1, we then detail our experiment design, and test
how successful the individual attacks are in Section 5.2.
Afterwards, we investigate how well a backdoor trigger can
be disguised in Section 5.3. Then, in Section 5.4, we find
that explanations are harder to fool in non-manipulated areas.
Finally, the transferability study presented in Section 5.5
explores whether white-box access to the attacked model is
necessary in practice.

Learning Setup. We train ResNet20 [20] models on the
CIFAR-10 dataset [25, 26], which consists of 60,000 color
images with 32× 32 pixels in 10 classes. The CIFAR-10
dataset is only 163MB in size and, hence, high accuracies
can be reached with small networks in short training times,
enabling quick experimentation. Therefore, experiments can
be run multiple time and be statistically evaluated.

Target Explanations. We evaluate the following targets:

(a) Square. The square target similar to related work [33]
to ensure comparability (cf. Fig. 1).

(b) Opposite Corner. A region in the shape and dimension
of the trigger but in the opposite corner of the trigger
to research how well the relevance can be steered away
from the trigger (cf. Appendix C).

(c) Explanation Preserving. The realistic clean explanations
obtained of the corresponding clean samples in a clean
model, known as “explanation-preserving” [32].

(d) Arbitrary. Explanations of random clean samples in the
clean model to test if arbitrary but realistic explanations
can be reached.

Note that in the first two settings we use the same target
explanation for each input, even though our attack is capable
of forging different target explanations for each sample.

5.1. Experiment Design

We introduce the experiment design for our core exper-
iments. Thereafter follow details on how we perform the
attacks from related work [33].

Training Models. First, we train three clean ResNet20
models from scratch. These models are used to generate
clean explanations and serve as victim models for the ADV
and ADV2 attacks. Next, we generate three poisoned datasets.
In each we duplicate a random ρ = 1% subset of the data,
add the trigger and assign the target class. On each poisoned
dataset we train a manipulated ResNet20 model from scratch,
resulting in three models. During all trainings, we apply a
random crop and a horizontal flip as data augmentation
techniques, i.e., with 50% propability the image is flipped
and the trigger moves to the bottom left. The exact details
of the training procdure are provided in Appendix B.



TABLE 1: The ASR and the MSE dissimilarities of all four target explanations.

Expl.M. Trigger Attack ASR ± std MSE ± std

G
ra

di
en

ts –
CLEAN 0.100±0.00 0.271±0.00

ADV 0.100±0.00 0.090±0.00

ADV2 0.678±0.01 0.174±0.02

Square
BD-ONLY 0.996±0.00 0.291±0.01

EABD 0.896±0.15 0.182±0.07

BD+ADV 1.000±0.00 0.112±0.01

G
ra

dC
A

M –
CLEAN 0.100±0.00 0.286±0.00

ADV 0.101±0.00 0.056±0.00

ADV2 0.953±0.03 0.079±0.01

Square
BD-ONLY 0.996±0.00 0.283±0.01

EABD 1.000±0.00 0.047±0.00

BD+ADV 1.000±0.00 0.073±0.01

(a) Square

ASR ± std MSE ± std

0.100±0.00 0.037±0.00

0.100±0.00 0.007±0.00

0.636±0.03 0.008±0.00

0.996±0.00 0.026±0.00

0.998±0.00 0.017±0.00

1.000±0.00 0.010±0.00

0.100±0.00 0.170±0.00

0.101±0.00 0.013±0.00

0.998±0.00 0.014±0.00

0.996±0.00 0.148±0.00

1.000±0.00 0.004±0.00

1.000±0.00 0.025±0.01

(b) Opposite Corner

ASR ± std MSE ± std

0.100±0.00 0.000±0.00

0.100±0.00 0.004±0.00

0.485±0.04 0.015±0.00

0.996±0.00 0.028±0.00

0.999±0.00 0.023±0.00

1.000±0.00 0.006±0.00

0.100±0.00 0.000±0.00

0.100±0.00 0.000±0.00

0.310±0.03 0.005±0.00

0.996±0.00 0.124±0.01

1.000±0.00 0.015±0.00

1.000±0.00 0.001±0.00

(c) Expl. Preserv.

ASR ± std MSE ± std

0.100±0.00 0.028±0.00

0.100±0.00 0.005±0.00

0.544±0.05 0.016±0.00

0.996±0.00 0.026±0.00

– –
1.000±0.00 0.007±0.00

0.100±0.00 0.067±0.00

0.100±0.00 0.000±0.00

0.533±0.06 0.011±0.01

0.996±0.00 0.127±0.01

– –
1.000±0.00 0.001±0.00

(d) Arbitrary

Inference Time Attacks. For each inference time attack, we
optimize the learning rate η, the loss weight λ, and the beta
growth rate for 200 trials in optuna on a subset of 2,048 test
samples. Each attack consists of 500 PGD-steps as defined
in Eq. (1), where the first 100 steps are warm-start steps on
Lexpl only. We enforce an infinity norm limit of ϵ = 8/255.
Given white-box access, the adversary could theoretically
optimize hyperparameters for each sample individually, i.e.,
our evaluation might underestimate the attack’s potential.
The trial with a high Attack Success Rate (ASR), and a
low dissimilarity is choosen to rerun all 10.000 test samples,
where we rate the ASR twice as high. We report the mean
and the standard deviation across three runs on the respective
three models (cf. Table 1). In addition, we evaluate trigger-
only images x̃ = τ (x̂) on the three manipulated models
(BD-ONLY), and clean images x̂ on the three clean models
(CLEAN). Further details can be found in Appendix B.

Hyperparameters of the EABD Attack. Starting from the
three clean models, we finetune three EABD models [33].
For each manipulation, we run multiple optimization trials
(10 for GradCAM and 100 for Gradients) with optuna on
the learning rate, the loss weight, the number of epochs and
the batch size. The best model is picked as suggest in the
original paper [33]. Further details are in Appendix B.

5.2. Attack Analysis

In Table 1, we present the ASRs and the MSE dissimi-
larities for the four target explanations. For EABD we do not
evaluate the arbitrary target as this combination cannot be
achieved via model-manipulation alone. A successful attack
is characterized by a high (close to 1) ASR and a low (close
to 0) MSE dissimilarity. The MSE lays in the interval [0, 1].

Attack Success Rates. The ASR of the ADV attack and
the clean samples (CLEAN) show an ASRs of around 0.1.
This value is reasonable, as both aim to keep the prediction
correct and for 10% of the samples ŷ = yt. In fact, only
the MSE dissimilarity can be compared between ADV and
the other attacks, while the CLEAN rows serve as baselines.

ADV2 shows considerably lower ASRs for Gradients and the
two realistic target explanations in GradCAM. EABD and
BD+ADV reach high ASRs of ≥99%, with one exception of
89% for EABD, which is similar to the original work [33].

Explanation Dissimilarities. In all attacks, the dissimilarity
to the target explanations is considerably smaller as the
baseline (BD-ONLY). ADV outperforms ADV2 in all settings,
but is also solving an easier task. In particular, running a
perfect ADV attack in an explanation preserving setting is
as easy as returning the original samples. Against Gradients
our method BD+ADV outperforms EABD, while against
GradCAM only the realistic target works better. ADV2 shows
performs worse than BD+ADV in all attacks but the one
against the opposite corner target.

5.3. Trigger Overlap Analysis

A trigger can be spotted faster if highlighted in the
explanation. Related works even suggest to use GradCAM
explanations as defenses [11, 13]. Hence, we study here how
much the relevant pixels overlap with the trigger.

Metrics. We measure this overlap with three metrics. Each
is parameterized by a threshold τ , extracting binary masks of
relevant pixels from the scaled explanations rbin := (r > τ):

1) Intersection Over Union (IoU). First, we capture the
ratio between the intersection size and the union size. Given
the binary mask rbin, we define the Intersection Size (IS)
as ∥rbin ∧ m∥1 and the Intersection-over-Union (IoU) as:
IS/∥rbin∨m∥1 , where m respresents the binary trigger mask.

2) Explanation Mask Recall (EMR). Next, we compute the
trigger size as the number of pixels that contain the trigger,
i.e., ∥m∥1. Given the intersection size IS and the trigger
size we compute the fraction of pixels of the trigger that are
covered with relevant pixels and define the recall as IS/∥m∥1.

3) Explanation Mask Precision (EMP). For the last measure,
we take the precision of the binary explanation mask as:
IS/∥rbin∥1. We capture the special case where ∥rbin∥1 = 0
such that we set the precision to 0.



TABLE 2: Trigger overlap analysis: The three metrics and for five thresholds and the target explanation opposite corner.

Expl.M. Attack 10% 30% 50% 70% 90%

Gradients
BD-ONLY 0.007 0.011 0.008 0.003 0.001
EABD 0.003 0.000 0.000 0.000 0.000
BD+ADV 0.011 0.000 0.000 0.000 0.000

GradCAM
BD-ONLY 0.035 0.053 0.075 0.079 0.051
EABD 0.000 0.000 0.000 0.000 0.000
BD+ADV 0.024 0.020 0.016 0.017 0.008

(a) IoU

10% 30% 50% 70% 90%

0.246 0.090 0.022 0.005 0.001
0.022 0.001 0.000 0.000 0.000
0.051 0.001 0.000 0.000 0.000

0.998 0.997 0.952 0.595 0.131
0.001 0.000 0.000 0.000 0.000
0.386 0.147 0.052 0.026 0.009

(b) Explanation Mask Recall

10% 30% 50% 70% 90%

0.007 0.012 0.011 0.008 0.006
0.004 0.000 0.000 0.000 0.000
0.014 0.000 0.000 0.000 0.001

0.035 0.053 0.075 0.081 0.065
0.000 0.000 0.000 0.000 0.000
0.024 0.020 0.017 0.022 0.028

(c) Explanation Mask Precision

TABLE 3: Transferability analysis: The ASR and the MSE dissimilarities evaluated on the two respective other models.

Expl.M. Trigger Attack ASR ± std MSE ± std

Gradients
– ADV 0.092±0.00 0.253±0.00

ADV2 0.134±0.03 0.246±0.00

Square BD+ADV 0.998±0.00 0.280±0.01

GradCAM
– ADV 0.086±0.01 0.273±0.00

ADV2 0.158±0.03 0.276±0.00

Square BD+ADV 0.999±0.00 0.278±0.01

(a) Square

ASR ± std MSE ± std

0.088±0.01 0.039±0.00

0.153±0.05 0.045±0.00

0.999±0.00 0.024±0.00

0.092±0.01 0.160±0.00

0.145±0.03 0.155±0.00

1.000±0.00 0.145±0.00

(b) Opposite Corner

ASR ± std MSE ± std

0.088±0.01 0.019±0.00

0.107±0.03 0.024±0.00

0.998±0.00 0.027±0.00

0.095±0.00 0.025±0.00

0.147±0.01 0.033±0.00

1.000±0.00 0.107±0.01

(c) Expl. Preserv.

ASR ± std MSE ± std

0.091±0.01 0.027±0.00

0.151±0.06 0.030±0.00

0.998±0.00 0.026±0.00

0.094±0.01 0.051±0.00

0.162±0.02 0.061±0.00

1.000±0.00 0.110±0.01

(d) Arbitrary

All three metrics lead to values in [0, 1], where 1 can only
be achieved exactly the trigger is captured. Successful attacks
have lower values, while higher values help the defender.

Results. We present results for the opposite corner target
in Table 2, showing how well the relevance can be “pushed
away” from the trigger. For Gradients, the attacks BD+ADV
and EABD show low overlaps. However, even in the BD-
ONLY setting Gradients is not suitable to detect triggers. For
GradCAM, in turn, the trigger is highlighted, as can be seen
at the larger values in the BD-ONLY row and in Appendix C.
EABD is extremely successful, showing very low overlaps
for all thresholds. BD+ADV shows larger values but can still
successfully disguise the on-going attack at inference time.
In Appendix A, we present more results on the overlap.

5.4. Quadrature Analysis

We find that nearby the trigger (where no input ma-
nipulation happens), the target explanation is yielded the
worst. Thus, we analyze the effectivity of input-manipulations
against clean models to isolate the effect. The input is divided
into four quadrants, “not-manipulated,” “opposite,” “left,”
and “right,” and is perturbed in all but the first quadrant
as part of an ADV2 attack [44] aiming for a square target
explanation. The quadrants are then rotated by 90 degree four

TABLE 4: The MSE results of our quadrature analysis.

Expl.M. not-manip.± std left ± std right ± std opposite± std

Gradients 0.199 ±0.00 0.135±0.00 0.135±0.00 0.132 ±0.00

GradCAM 0.137 ±0.02 0.104±0.02 0.105±0.02 0.099 ±0.02

times, resulting in four attacks against each of the three clean
models (12 attacks in total). Table 4 shows the averaged MSE
evaluated separately on each of the quadrants (respecting
the rotation). Our results confirm that fooling explanations
is more challenging in and nearby not-manipulated areas.

5.5. Transferability Analysis

Lastly, we research how samples optimized against one
model, perform against the other two models. Essentially
the earlier made white-box assumption is removed. Table 3
contains the results of this experiment, leading to three
findings: For BD+ADV, the trigger still works yielding ASRs
of ≥99.8%. The ADV2 attack does not transfer, in terms
of ASRs. The MSE dissimilarities of all attacks are much
lower and in the range of the baseline (BD-ONLY) for the
respective target and explanation method (cf. Table 1). This
means, the explanations are not successfully fooled any more.

6. Conclusion

Composite explanation-aware attacks allow to hide arti-
facts caused by neural backdoors, via a decomposition of
attack goals: We build upon a traditional neural backdoor
established at training-time and fool the XAI techniques at
inference time. In contrast to prior work [33], we require
mere data poisoning rather than full access to the training
procedure and can produce input-specific target explanations.
Even if inference-time mitigations (such as filtering) were
in place, composite explanation-aware attacks do not fail
but remain partially effective as neural backdoors, increasing
practical effectiveness over pure input-manipulations [44].
This dichotomy is unique to explanation-aware attacks.



Availability

To foster future research on the robustness of explainable
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A. Additional Trigger Overlap Results

Here we present the trigger overlap as line graphs. In
Fig. 2, find the plots for BD+ADV. The dashed lines represent
the minimum and maximum values. Not surprisingly, the
target explanation “opposite corner” truely works best in
hiding the trigger. The results for the explanation preserving
and the arbitrary target explanations are very similar, which
is related to the CIFAR-10 dataset, where the main object is
often in the middle of the image. We present the visualiza-
tions for the trigger sample on a backdoored model and the
EABD attack in Fig. 3 and 4 with the same axis scaling. In
Fig. 3b, it can be seen how GradCAM highlights the trigger.

B. Hyperparameter

In this section, we provide further details on the hyper-
parameters of our experiments.

Model Training. For each training we use the default
parameters of 200 epochs, with a learning rate of 0.1, a
weight decay rate of 0.0001, and a momentum of 0.9. The
optimization is done with SGD in pytorch. We use a
multistep learning rate scheduling, reducing the learning rate
at the epochs 100 and 150. In all trainings, we use horizontal
flipping and a random cropping as data augmentation. Note
how this moves the trigger around or crops it from the image.

Optimizing the EABD Attack. In Table 6, we present the
determined hyperparameters for the EABD attack. Using the
optuna random sampler we sample the learning rate from
the interval [0.0005, 0.030], the loss weight from [0.8, 0.999],
the batch size from [16, 256], and the number of epochs from
[4, 40]. These numbers are the ranges as suggest by the code
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Figure 2: Depictions of the trigger overlap of BD+ADV for
the two explanation methods Gradients and GradCAM and
the four different target explanations.
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(b) GradCAM

Figure 3: Depictions of the trigger overlap of BD-ONLY for
the two explanation methods Gradients and GradCAM.

base of the original work [33]. The best models are selected
according to the scoring as suggest in the original work.

Hyperparameter of the Inference-Time Attacks. In Table 5,
we present the hyperparameter of the individual inference
time attacks. The best parameters are determined using the
optuna random sampler. We sample the learning rate from
the interval [0.001, 0.032], the loss weight from [0.01, 0.99],
and the beta growth rate from [0.0, 1.0]. The best set of
parameters is selected according to the following formula:
min( (1−ASR) ·2+MSE ). When scaling explanations to
[0, 1] we use a minimal upper limit of 0.000001 as a stability
term to enhance the numerical stability.

C. Qualitative Results

In Fig. 5, 6, 7, and 8, we provide qualitative examples
of the above introduced and mentioned attacks.

As can be seen in Fig. 5 and 6, the attacks ADV and
BD+ADV produce more precise explanation, compared to
ADV2, in particular for the Gradients explanation method. We
can also see that the explanation is fooled a little worse nearby
the trigger in the BD+ADV attack, an effect we investigate
in Section 5.4. The EABD attack, in turn, shows the most
precise explanation for both explanation methods, but also



changes the model in this regard. In Fig. 7, and 8, we find
that when fooling GradCAM sometimes additional highlights
of similar size appear. In the attacks against Gradients we
see that the explanation fooling works surprisingly well for
some samplers but not at all for others. We leave the further
investigation of this observation as future work. The EABD
attack, in turn, fails to show small highlights like the opposite
corner in the Gradients explanation method. We also leave
the improvement of this attack as future work. Overall, we
find it surprising that such a gradient, showing a little square
in this specific position, exists nearby so many samples, and
we want to encourage the community to have closer look on
such effects.

Fig. 9 displays the GradCAM and Gradients explanations
for the backdoored model and the clean model, for trigger
images and clean images respectively. The GradCAM expla-
nations show a highlight on the trigger here, as expected,
while the Gradients explanation do not.
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Figure 4: Depictions of the trigger overlap of EABD attack
for the two explanation methods Gradients and GradCAM
and the three different target explanations.

TABLE 5: The hyperparameters of the input-manipulation attacks.

Expl.M. Trigger Attack η λ β-grow

G
ra

di
en

ts

–
ADV 0.001 0.893 0.187
ADV 0.002 0.819 0.043
ADV 0.001 0.881 0.148

Square

ADV2 0.013 0.933 0.002
ADV2 0.021 0.846 0.008
ADV2 0.014 0.840 0.366

BD+ADV 0.002 0.910 0.036
BD+ADV 0.001 0.042 0.035
BD+ADV 0.003 0.942 0.051

G
ra

dC
A

M

–
ADV 0.008 0.712 0.512
ADV 0.003 0.504 0.183
ADV 0.007 0.741 0.313

Square

ADV2 0.014 0.687 0.015
ADV2 0.004 0.892 0.022
ADV2 0.006 0.894 0.074

BD+ADV 0.002 0.251 0.055
BD+ADV 0.003 0.087 0.098
BD+ADV 0.002 0.075 0.069

(a) Square

η λ β-grow

0.002 0.722 0.129
0.002 0.692 0.149
0.001 0.574 0.612

0.016 0.275 0.018
0.007 0.489 0.002
0.003 0.827 0.018

0.006 0.113 0.042
0.005 0.201 0.011
0.003 0.108 0.107

0.005 0.450 0.146
0.005 0.559 0.109
0.001 0.216 0.546

0.002 0.038 0.394
0.005 0.088 0.293
0.006 0.058 0.043

0.010 0.105 0.033
0.007 0.031 0.172
0.004 0.037 0.141

(b) Opposite Corner

η λ β-grow

0.002 0.896 0.815
0.002 0.271 0.192
0.002 0.330 0.689

0.032 0.554 0.829
0.014 0.430 0.806
0.026 0.339 0.914

0.001 0.660 0.144
0.001 0.086 0.144
0.001 0.366 0.235

0.003 0.309 0.472
0.002 0.292 0.090
0.002 0.414 0.487

0.001 0.870 0.085
0.001 0.933 0.684
0.001 0.977 0.626

0.021 0.720 0.124
0.014 0.289 0.061
0.019 0.163 0.008

(c) Expl. Preserv.

η λ β-grow

0.002 0.503 0.109
0.001 0.686 0.424
0.001 0.299 0.621

0.031 0.512 0.899
0.011 0.512 0.955
0.001 0.808 0.003

0.001 0.274 0.120
0.001 0.083 0.063
0.001 0.077 0.099

0.001 0.501 0.487
0.001 0.811 0.024
0.001 0.667 0.754

0.007 0.896 0.003
0.001 0.946 0.714
0.001 0.981 0.484

0.008 0.189 0.152
0.021 0.096 0.056
0.008 0.162 0.123

(d) Arbitrary

TABLE 6: The hyperparameters of the EABD attacks.

Expl.M. η λ batchsize epochs

Gradients
0.001 0.815 42 35
0.001 0.828 104 30
0.001 0.838 191 6

GradCAM
0.001 0.802 31 28
0.001 0.882 48 33
0.001 0.881 51 9

(a) Square

η λ batchsize epochs

0.001 0.812 64 39
0.001 0.876 69 38
0.001 0.845 40 24

0.002 0.840 69 36
0.002 0.874 63 11
0.001 0.812 39 26

(b) Opposite Corner

η λ batchsize epochs

0.001 0.829 76 28
0.001 0.839 77 37
0.001 0.881 170 29

0.002 0.837 30 33
0.001 0.819 70 30
0.001 0.922 65 33

(c) Expl. Preserv.
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Figure 5: For the explanation method GradCAM and the target Square
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Figure 6: For the explanation method Grad and the target Square
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Figure 7: For the explanation method GradCAM and the target Opposite Corner
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Figure 8: For the explanation method Grad and the target Opposite Corner
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Figure 9: For the explanation methods GradCAM (left two blocks) and Gradients (right two blocks)
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